
Enabling Programmable Metric Flows
Aishwariya Chakraborty1, Chander Govindarajan2, Kavya Govindarajan1, Priyanka Naik1, and Seep Goel2

IBM Research, India
1{aishwariya.chakraborty1,kavya.g,priyanka.naik}@ibm.com, 2{chandergovind,sgoel219}@in.ibm.com

Abstract—In the evolving computing landscape, extending
from centralized clouds to multi-cloud and edge, the need for
adaptable observability is becoming increasingly critical. Tradi-
tional static monitoring approaches grapple with inefficient data
transfer, limited scalability, heterogeneous environments, and
rigid metric processing pipelines. This paper introduces a novel
metric processing system, Programmable Metric Flows (PMF),
which is rooted in the principle of dynamism. PMF is a first-
of-its-kind, light-weight, SQL-based metric processor. It empow-
ers optimization-driven transformations of metrics, tailored to
evolving resource availability and application requirements. This
paper demonstrates how PMF enables various transformations
for dynamic and fine-grained metric collection. We also showcase
the capability of PMF for dynamically tuning the frequency
of metrics to reduce the WAN cost in edge environments. Our
experiments show that PMF performs at par with state-of-the-
art techniques in terms of metric processing capability, with 10X
lesser resource utilization. We envision PMF to usher in an era
of lightweight programmability for observability platforms.
PMF is open-source and available at: https://github.com/observ-
vol-mgt/PMF.

I. INTRODUCTION

The continuous expansion of cloud computing is motivating
enterprises to adopt a multi-cloud strategy [1]. The multi-
cloud strategy provides organizations the flexibility to operate
within the most optimal computing environment for each
workload. Gartner [2] projections indicate that by 2025, 75%
organizations will implement services across clouds. For en-
terprises utilizing cloud services across geographical locations,
selecting a single public cloud infrastructure provider that
meets all their requirements is a challenge, and thus, a multi-
cloud approach becomes a necessity. Moreover, a multi-cloud
strategy enables enterprises to capitalize on the capabilities,
including resiliency, performance, and pricing, offered by
the selected platforms. This approach also safeguards against
vendor lock-in, preventing a scenario where an organization
is compelled to incur higher costs due to reliance on a single
cloud service and be vulnerable to potential constraints.

As organizations increasingly distribute their workloads
across multiple cloud platforms, the need to gain comprehen-
sive insights into the performance, behaviour, and interactions
of these systems is paramount. Observability provides a holis-
tic view of the entire infrastructure, facilitating real-time mon-
itoring, optimal resource utilization, and proactive issue iden-
tification. Observability is central to all cloud deployments,
facilitated by tools such as Prometheus [3], Graphite [4],
VictoriaMetrics [5], and Application Performance Monitoring

All authors contributed equally

Fig. 1: Metrics have unequal importance. Orange dots are 20% most important metrics
& blue dots are 20% least important metrics.

(APM) solutions [6–8] that seek to provide detailed analytics.
These solutions are widely used across cloud deployments
and are a cost overhead for enterprises. For example, Ama-
zon Cloudwatch [9], Azure Monitor [10] and Google Cloud
monitoring [11] adopt a per metric pricing model where
enterprises incur charges for exported metrics, dashboards and
queries executed against these metrics. This implies a direct
correlation between the volume of metrics monitored and the
associated costs borne by the enterprises.

The transition to multi-cloud has resulted in an explo-
sion in the scale of observability data. This data originates
from various sources, the application containers, orchestration
middleware and underlying compute hosts. It is crucial to
aggregate observability data from these diverse sources to
provide a unified view of the system and to enable timely
detection of the root cause of failures [12]. The larger volume
of observability data in multi-cloud leads to higher collection,
storage and processing costs and also causes a substantial
increase in Mean Time to Detect (MTTD) and Mean Time
to Resolve (MTTR). Furthermore, it introduces complexity to
all downstream observability tasks, ranging from the manual
setup of dashboards to automated learning systems. Addition-
ally, bandwidth constraint, a problem even in single-cloud
environments, is aggravated in a multi-cloud setting. Cross-
cloud observability plumbing incurs high egress costs and
limits valuable bandwidth, especially in edge clouds with
constrained resources. This emphasizes the importance of
effectively managing the volume of observability data.

A simple approach to decrease metrics volume is to reduce
their collection frequency. However, metrics serve varying
observability objectives, such as anomaly detection, optimiza-
tion and planning, and different metrics contribute differently
to these goals. We show that metrics contribute unequally
to different objectives by analysing several multivariate time
series anomaly datasets [13–16] and report the AU-ROC [17]

scores for anomaly detection (COPOD [18, 19]). We calculate
each metric’s importance as the Pearson correlation between
the metric and the ground truth indicating system anomalies
at a timestamp. Figure 1 shows the AU-ROC when only the
top 20% most(least) important metrics are considered, with
the remaining metrics replaced by their average value in the
absence of anomalies. We observe that the top 20% most
important metrics consistently outperform the least important
20%, indicating that treating all metrics equally is not optimal.

Metrics critical for real-time anomaly detection and perfor-
mance issues may need to be collected more frequently while
those required for bookkeeping purposes may be collected less
frequently. Tuning optimal frequency for individual sensors is
a well-studied problem for IoT data collection [20, 21]. These
works can be considered as adaptive mechanisms; for instance,
they transmit a data point only if it crosses a threshold from
the mean of previous values. There is also prior art [22] that
looks at the optimal collection frequency for different metrics
based on the historical rate of change of the metric.

Existing solutions fare poorly in multi-cloud scenarios on
two main dimensions. Firstly, these approaches are typically
bottom-up, adaptive schemes where the collection rates of
individual metrics are based on their local history. These
approaches lack a global view, thereby, failing to consider
factors such as the available bandwidth or the importance of
a metric to all others for downstream tasks. Secondly, these
solutions do not dynamically respond to changing underly-
ing conditions. Multi-cloud environments, more than single
clouds, are characterized by dynamically shifting conditions,
including changing traffic, workload deployments due to cloud
bursts, and varying available bandwidth. Traditional metric
collection tools, such as Prometheus, OpenTelemetry [23], and
Datadog, lack support for dynamic, on-demand changes in
metric collection frequency and do not offer the capability
to configure different frequencies per metric.

We propose a first-of-its-kind metric processing system
that adopts a top-down approach by dynamically selecting
per-metric frequency in a fine-grained manner. Our approach
involves modelling the trade-off between frequencies of indi-
vidual metrics, accuracy of downstream tasks, and the avail-
able bandwidth at a cloud location. We formulate this as a
linear programming problem to solve for optimal frequencies,
considering that both metrics and bandwidth change over time.
Additionally, we advocate for larger frequencies for the long
tail of unimportant metrics for higher bandwidth savings with
minimal impact on the observability stack.

Enterprises can use approaches other than optimizing metric
collection frequencies to reduce metric volume. For instance,
they could aggregate metrics across devices in edge deploy-
ments and only collect individual metrics when anomalies
arise. Enterprises may also seek to selectively offload the
processing of observability data based on resource availability
at the clouds. A disaggregated approach, where process-
ing occurs at individual clouds and a summarized view is
transmitted to the central cloud, during intervals of ample
compute and memory resources could switch to a centralized

Fig. 2: PMF Framework Overview

approach during resource constraints, where a reduced set
of metrics are collected at the edge and processed centrally.
Most enterprises navigate through these architectures based
on resource availability and downstream task requirements,
executing selective partial processing at the edge and handling
the remaining processing centrally.

We present the design and implementation of Programmable
Metric Flows (PMF), shown in Figure 2. PMF is a dynamic
metric flow processor that is built for transforming metrics
with support for on-demand reconfigurations. PMF takes a
Directed Acyclic Graph (DAG) of the transformations to be
performed on the metrics data. These transformations could
be popular operations such as aggregation, filtering as well as
our novel transformation to set metrics’ collection frequency.
PMF translates these transformations into SQL queries that are
executed on a database of ingested metrics. A key requirement
for such a system is to be generic and adaptable to any
metric format and orchestration platform, to be lightweight
but still support various transformations required to handle
the dynamic nature of multi-cloud metric pipelines. PMF is
based on an in-memory SQL database and is fast, minimal
and generic - allowing easy programming of metric flows.

To summarize, our contributions in this work are:
1. We present PMF, a novel system for fast, programmable
and dynamic transformation of metric flows (§ III).
2. We propose a novel top-down approach to manage
metric data volume by dynamically adjusting the frequency
of collection, based on metric importance and resource
availability (§ IV).
3. We show the programmability of PMF with support
for various transformations like filter, frequency, aggregate
and adaptive. PMF works on metric transformation DAGs,
supporting combinations of these transformations for real-
world use cases (§ III-B).
4. We evaluate PMF ’s performance and show that it can scale
up to 200K metrics per node. PMF is light weight with a low
resource consumption of ∼2.5% CPU and ∼300MB memory.
The low control plane latency (in the order of microseconds)
renders PMF highly responsive and adaptable to the user’s
dynamic requirements (§ V-A).
5. While no prior art supports dynamic metric transformation,
we compare the performance and resource overhead of PMF
with OTel. For comparable execution time, OTel requires 10x
more CPU than PMF for filter transformation (§ V-B).
6. We showcase the applicability of PMF for the use case of

2

dynamically adjusting the frequency of metrics in an emulated
multi-cloud environment. We demonstrate bandwidth savings
and negligible impact on downstream tasks. We compare our
approach with the state-of-the-art baseline, which collects
metrics at the frequency of 30s. Compared to the baseline, we
reduce the loss of significant information by ∼600x (§ V-D).

II. BACKGROUND AND RELATED WORK

Efficient monitoring of cloud environments is necessary for
timely root cause analysis and low MTTD and MTTR. The
metric observability pipeline for a multi-cloud environment
consists of three core components:

(i) Metric Collector is the set of monitoring agents placed
across nodes in a multi-cloud or edge setup. These agents cap-
ture real-time metrics with cloud-native and open-source solu-
tions such as OpenTelemetry [23] (OTel) and Prometheus [24].
OTel is an instrumentation standard that focuses on providing a
unified approach to collect traces, metrics, and logs. It includes
libraries for different programming languages, agents for data
collection and transformation, and exporters for transmitting
data to observability backends. Prometheus enables the col-
lection of metrics from various sources like the application,
operating system, and network. Metrics are scraped from these
sources periodically, and are stored locally in a time-series
database (TSDB). A metric consists of a timestamp, metric
name, value and a set of labels represented in the form of a
key and value, allowing transformations based on labels.
(ii) Metric Aggregator Since local storage is limited and
metric analyzers rely on historical data for proactive failure de-
tection, a long-term storage mechanism is essential. Tools such
as Thanos [25] and Cortex [26] enable long-term multi-tenant
storage of metrics, and can consume metrics from multiple
sources. Thanos acts as a global query and storage aggregator
for Prometheus instances, with metric federation across differ-
ent cloud or edge nodes ensuring a unified and coherent view
of the entire infrastructure. It supports horizontal scalability,
enabling organizations to handle large volumes of metrics
efficiently. However, the cost overhead of communication from
a collector, like Prometheus to an aggregator, like Thanos is
over WAN. Managing the volume of metrics and reducing this
overhead is one of our key contribution.
(iii) Metric Analyzer derives insights from the collected data.
Metrics can be used to define alerts and be visually monitored
through dashboards in Grafana [27]. Integration of machine
learning algorithms into processing pipelines enhances the
capability for anomaly detection and predictive analytics,
enabling proactive issue resolution.

Related Work Efficient monitoring implies fast identifica-
tion of application, system, and performance issues with low
overhead on the environment, which is the aim of many prior
arts in academia and industry. Most monitoring frameworks
work on static KPIs or performance analysis to set the metric
sampling rate [9, 28–31]. Viperprobe [12], an eBPF based
monitoring tool, defines critical metrics based on overhead
of collecting each metric. However, it does not consider the
impact of these metrics for a downstream task. Volley [32]

adjusts the sampling rates of metrics based on overhead on the
node from which the metrics are collected. Sieve [9] clusters
and aggregates metrics across microservice chains based on
dependencies to reduce the number of metrics. Toni et.al. [33]
propose preventing metrics from being sent to the metric
collection system from an application if the metric value is
not changing over time. This is efficient for getting maximum
storage and bandwidth saving benefits, but it assumes control
over the application, and thus, may not work as a plug and play
to any existing metric collection system. Moreover, all these
frameworks focus on the entire set of metrics collected without
considering the impact of individual metrics on downstream
tasks. SkyView [34] proposes constraint-based transformations
to reduce query cost for metrics. The authors suggest dropping
the non-useful metrics for bandwidth reduction, but do not
consider the need for these metrics with addition of new
anomaly functions or new application deployments, and thus,
may not be applicable for the dynamic cloud environment.

Efficient monitoring in dynamic and resource constrained
IoT networks is achieved using various data-driven techniques.
These include basic threshold-based filtering approaches [35,
36] which sense data continuously and forward it for process-
ing only when the data value exceeds a given threshold. Since
sensing also consumes significant energy, some works [37, 38]
propose adaptive sampling techniques that utilize the statistical
aspects like, spatial and temporal correlation of sensed data.
Another category of work [21] on data transmission reduction
in IoT explores machine learning techniques to predict the
future sensor data values and decide whether to sample a
data point. PREMON [39] proposes generation of a model
on historical sensor data at a centralized location, distributing
the model to the sensors, and the sensors sending the readings
only when different from the model values. To reduce data
transmissions further, DBP [40] suggests the use of sliding
windows for buffering and waiting for multiple occurrences
of divergent data points before transmission. In another stream
of work, the data collection and transmission rate of sensors
is determined using optimization. These schemes establish a
trade-off between energy consumption [41], network through-
put [42], and data quality [43] but, are specific to sensor
networks/IoT environment. We build on similar principles
intending to cause minimum impact on anomaly detection
algorithms that use these metrics. OTel provides various trans-
formation like filtering and aggregation, but does not provide
a framework for adjusting these transformations in real-time.

III. PROGRAMMABLE METRIC FLOWS (PMF)

Figure 2 shows the typical architecture of a cloud-native
metric collection stack extended to multi-cloud scenarios. The
applications are instrumented with preferred observability li-
braries. The metrics are collected at a local collector, either via
push or periodic pull, over the local network. The metrics can
also be forwarded not only to the central cluster but also to an
alerting agent or local storage. The central metric aggregator
periodically receives updates from the individual collectors
over the WAN. The Prometheus Remote Write protocol, for

3

example, sends batches of metrics using a common protocol,
understandable by a wide range of aggregators.

We enable dynamic control on the transmission of metrics
from local collectors to the central aggregator. We have the
following requirements from our metric processing system:
(i) Generic: Support a wide range of metric collection stacks
and frameworks. It should be plug-and-play and work with a
variety of solutions like Prometheus, Graphite, Influx, etc.
(ii) Fast & Minimal: Add minimal overheads to cloud de-
ployments and the collection times of metrics.
(iv) Programmable: Enable new approaches towards pro-
gramming metric flows. Beyond our use case of programming
frequencies, PMF should allow fine-grained control and intel-
ligent metric collection based on end-user requirements.
(v) Fine-grained: Allow the selection of a specific subset of
metrics based on their label keys and values for programming.
(vi) Dynamic: Support on-demand updates, making the pro-
cess of changing flow processing quick and easy.

Figure 3 shows the system architecture of our proposed
PMF processor. Specifically, we envision that our PMF proces-
sor is deployed on edge locations as a proxy-like middlebox
between the local controller and central aggregator.

The Processor comprises the following subcomponents:
(i) Receiver: Decodes transmitted metrics to a processing-
friendly format. For e.g., Prometheus Remote Write conveys
compressed metrics as batches encoded in a Protobuf [44]
format. Similar formats exist for platforms like OTel.
(ii) Executor: Core component responsible for transforming
the metrics, e.g., changing collection frequency of metrics.
(iii) Transmitter: Encodes updated metrics back into the
expected format and transmits to the central aggregator.
(iv) Controller: The user-facing component with an interface
to create(update) the metrics programming flow.
(v) Configurator: Converts the YAML specification of the
transformation into transformation queries that can be applied
to the metrics data stored in the PMF processor.

The Receiver, Transmitter, Controller and Configurator are
straightforward components, grounded to actual implementa-
tion requirements. However, due to the inherent complexity of
the Executor, we prioritize a more detailed explanation of its
design and implementation for the brevity of space.

To implement the Executor, we propose a SQL-based sys-
tem. The Receiver inserts metrics into SQL tables and the
processing of metrics is achieved using SQL queries. This
approach allows us to rely on a standard framework for
efficient programming of metric flows.

Prior art in TSDB avoided SQL databases for 3 reasons: (a)
difficulty in scaling, (b) poor suitability for append-only data
and (c) archiving old data [45]. All these issues pertain to the
collection, storing, and querying of metrics for long-term use.
Metrics, in our context, have a limited span. The metrics in the
edge location are stored in the SQL database for the duration
of processing and are finally either dropped or forwarded.

Using streaming data solutions is yet another option for time
series data. However, they are unsuitable for 3 main reasons:
(a) such systems are designed for large scales of data, the so-

called big data, and violate our minimal and fast requirements,
(b) streaming vs batching: though metrics are themselves
streaming, the transfer of metrics between from edge collector
to central aggregator is usually in large batches (to minimize
the transfer overheads), and (c) SQL provides a more standard
interface for the creation of processing programs. SQL also
allows wider adoption by enabling easy porting of prior
processing approaches to our platform.

Figure 4 shows the proposed schema to store metrics. We
model metrics using 2 tables: (a) metrics table to store metric
instances with timestamp and value, and (b) labels table to
hold metric metadata in the form of labels as key-value pairs.
These tables are linked using the phash column which is
a unique hash string representing the exact label set, key-
values for a metric. For inserting an incoming metric, we
first compute the metric’s phash. Then, we insert each label
corresponding to this metric into the labels table, only if the
corresponding phash does not already exist in the table. Since
label key-values for a metric stream are fixed, this insertion
happens only once at the start of a metric flows. Finally, a
new row is added to the metrics table corresponding to the
metric. The metrics table has an additional markForExport
column that is used to indicate rows that will be forwarded to
the central aggregator at the end of the execution.

A. Transforms

PMF supports processing of the metric data on the edge
cloud before forwarding them to the central cloud. Consider
the smallest unit of operation a user may want to apply on the
metric flows. We term these operations as Transforms. In our
primary use case, this operation reduces the number of metrics
being sent by applying a sampling frequency. Each Transform
is realized as a SQL transaction, comprising standard SQL
queries. These queries create/update/delete rows in the metrics
and labels tables. The SQL-based design of PMF enables
support for generic transforms. The transforms supported by
PMF are a superset of capabilities available in prior art [23],
as well as novel transforms such as Frequency Transform that
is based on our primary use case to manage the volume of
metric data. We support the following transforms:

Frequency Transform: The Frequency Transform allows
controlling the sampling frequency for a set of metrics. It has
2 parameters, a selector parameter and a frequency parameter.
The selector parameter is a SQL select statement that allows
to choose a set of metrics in a fine-grained manner using
labels. Example selectors could be (a) all metrics of app1
(based on the label key app), or (b) all network related
metrics for an application (regex on label keys which match
net.*). The frequency parameter specifies the frequency of
sending metrics. For example, if metric samples come every
10 seconds and the user programs a frequency of 5 min, only
1 data point is transmitted in a 5 min window. The optimizer
discussed in § IV dynamically determines the frequency for
each metric based on its importance towards downstream tasks
being executed in the central cloud, such as anomaly detection,
while considering external factors such as resource constraints.

4

Fig. 3: PMF Architecture

Fig. 4: Table Schema in PMF processor

Fig. 5: Example of a DAG for Edge Cloud Environment

Filter Transform: Filter drops all metric datapoints match-
ing a selector. This can be used to drastically reduce the
amount of data being sent. For instance, all metrics pertaining
to a particular namespace can be dropped. Since PMF allows
on-demand programming, the Controller can later re-enable
these metrics as and when needed.

Adaptive Transform: In this transform, a metric is selected
for forwarding based on its value, specifically if it provides
distinctive information to the time series. An example adaptive
scheme only forwards metrics when their value at that times-
tamp is significantly different (such as by 2 standard devia-
tions) from the previously observed value. This approach helps
avoid unnecessary transmission of numerous small updates.

Aggregate Transform: Aggregate sends fewer metrics that
are derived from the full data. For instance, when metrics are
coming in every 10 sec, we may choose to send a single value
every 1 min, calculated as the mean of the values within that
time window. Prior art § II has studied advanced variants of
aggregation that can be used to send approximate updates.

No-Op Transform: Generally, a user specifies transforms
on a subset of metrics. The remaining metrics are assumed
to require no transformation, i.e. are forwarded without any
processing. For such metrics, we introduce a No-Op transform,
implying no transformation is to be performed on the metrics.
This is the default mode for metrics not selected by any
transforms, ensuring that unspecified metrics are not dropped.

Table I lists the details of our semantically equivalent
Transform to SQL translation strategy. Our SQL-based ap-
proach allows users to craft custom transformations easily.
A transform is succinctly represented as a parameterized set
of SQL statements. These parameters typically fall into two
categories: (a) the selector for selecting relevant metrics and
(b) variables controlling the transform, like the frequency
window, aggregate threshold etc.

We can further classify Transforms as stateless or stateful.
The Transforms may require state, for instance, some adaptive
algorithms store past historical data to compute parameters
such as threshold and standard deviation. In these cases, since
our executor is SQL-based, stateful transforms can create
tables for additional state management. Each Transform unit
is free to define its own schemas for these state tables.

B. Transform DAGs

To support generic programming of metric flows, we model
the input as a Directed Acyclic Graph (DAG) of transfor-
mation, where each node in the DAG is a transform unit.
The transformation DAG is specified through a YAML con-
figuration. Specifying DAGs through yamls is a well known
technique in prior art such as Kubeflow [46]. DAGs require
changes to the Executor detailed earlier. The executor now
processes a DAG starting from the input table. Each Transform
node in the graph selects a subset of the table according to
its logic and forwards a view to their children nodes. Each
child node operates on this reduced input set, and creates new
views for its children. Finally, the Executor exports all the
rows selected in the leaf nodes and sends one batch.

This design of modelling the transformation operations as a
DAG of individual Transform units, where each Transform unit
is a reusable block of SQL statements, allows a wide range of
possible metric flow programming using simple components.

Example DAG: We explain the need for DAG to model
PMF transformations with the help of an example application
running in an edge cluster. The application sends its metrics
to the central cluster every 5 seconds. The collected metrics
from multiple such edge clouds are then analyzed by an
analytic engine at the central cluster for a recommendation
based on geo locations. Since the analytics algorithm requires
some additional insights into the metrics, the metrics need
to be enriched with additional metadata. Moreover, due to
limited bandwidth availability, the user requires filtering to
send only metrics relevant to global analytics to the central
cloud. Further, as the analytics functions operate on incoming
data at per-minute granularity, the user wants to send the
metrics at per-minute frequency. In addition, there are two
local edge cloud operations that the user wants to perform.
The first is to use some of the metrics for local alerting, for
example, health check metric, CPU utilization overload metric,
etc. The second is to store and maintain some additional
metrics locally for a certain duration for audit purposes.

The above edge cloud metric requirements can be achieved
using the PMF transformation DAG capability as shown in
Figure 5. The user can specify an enrich transform, which
adds metadata available on the edge cloud as new labels.
This can be another transformation in addition to the ones

5

Transform Transform Query Operation
No-Op select * from metrics and markForExport=1 The default transform for metrics not affected by any transform. The

selected metrics are exported out of the processor.
Filter select metric from metrics where label 1 != ”A” and forward; no-op (label 1 ==

”A”)
Drop metrics with matching labels and forward the remaining metrics

Frequency select metrics where label 1 == ”A” current timestamp - last timestamp >= met-
ric frequency interval and forward; no-op (label 1 != ”A”)

Select metrics with matching labels and send if the timestamp difference
is greater than frequency interval of the metric

Adaptive select metrics where label 1 == ”A” and metric value > val threshold and forward;
no-op (label 1 != ”A”)

Forward metric only when the metric value is greater than the threshold
value specified

Aggregate select avg(metric value) where label 1 == ”A” and forward; no-op (label 1 != ”A”) Forward only the aggregate (avg) of the metric value

TABLE I: Transform to SQL translation in PMF . The transforms typically have parameters such as selectors (we have taken a simple selector on a single label) and variables.

described above III-A. The DAG can then fan out to serve
the 3 requirements – (i) using adaptive transform for local
alerts; (ii) using the aggregate transform to store locally for
audit metrics; and, (iii) adding a filter transform followed by
frequency transform to send only the required metrics for
global analytics at a frequency of 1 min.

C. Dynamism

The modelling of metric transformations as a DAG automat-
ically supports one of our core desired properties of dynamism.
In this model, dynamism can be achieved in two ways:

The first and more common requirement is when we need
to update the parameters of a Transformer - the selectors
and the variables. For example, suppose a family of metrics
with label app=”foobar” is being collected at a frequency
of 5 minutes. Due to changing conditions such as bandwidth
or metric importance for some downstream tasks, there is a
requirement to increase the frequency to once a minute. Such a
change does not require an update to the entire DAG, but to a
single node and, the rest of the DAG may operate unchanged.

The second form of dynamism is when the user wishes
to dynamically modify the structure of the DAG, such as
by adding or removing nodes in the DAG. An example of
such dynamism is that under certain bandwidth restrictions,
the user may wish to Filter all metrics with the label in-
stance=”secondary” of the app=”foobar”, thus adding a
new child to the previously seen Transform dynamically (and
removing it later, when bandwidth is available).

PMF supports both forms of dynamism. The PMF Con-
troller receives requests to update the DAG from its north-
bound API. It then reprograms only the relevant portions of
the DAG by changing variables, resetting state, adding or
removing children nodes, while preserving the rest of the DAG
structure. In the next batch processing, the executor uses the
updated DAG, leading to minimal disruption of operations.

D. Implementation

We implement our PMF processor as 678 lines of Go
program, with the executor built on top of embedded SQLite
running in in-memory mode. All of the database operations
are done in SQLite using the Go bindings. The transformation
DAG is modelled using structures in Golang, which store and
update SQL queries to be used for execution.

We selected SQLite as the engine since it can be embedded
into our program and meets our fast and minimal requirements.
Alternative implementations on top of other SQL database
engines may be considered, where our system is implemented
as a plugin to minimize the data transfer time to and from

the database. We opted for in-memory operations to further
speed up processing, since the metrics are being stored and
processed only temporarily, but show the impact of using a
files system in the evaluations § V.

Since SQLite does not support concurrent transactions,
currently, our executor operates on the DAG in a depth-first
manner. This restricts our processing speed and does not allow
realizing the full potential of our design. We can easily switch
to other SQL engines to overcome this limitation.

Adding a new transform in OTel requires adding the specifi-
cation using their own grammar, OpenTelemetry Transforma-
tion Language [47], whereas PMF simplifies this task with the
use of simple SQL queries. This is evident from the fact that
PMF implements a filter transform in just 14 lines of code,
whereas OTel requires 221 lines of code to implement the
same [23]. Thus, PMF provides a plug-and-play mechanism
to perform dynamic transformations to the metrics pipeline.

IV. DYNAMIC FREQUENCY OPTIMIZATION

The PMF Optimizer is a centrally located component re-
sponsible for dynamically determining the optimal frequency
for every metric. In this section, we discuss how the Optimizer
computes the optimal frequency.

System Model: We model the problem of determining the
optimal frequency of metrics as an optimization problem.
Typically, each cluster produces a large number of metrics of
different types such as app-level and node-level metrics. The
number of metrics generated per cluster varies dynamically
depending on its workload. In this work, we consider that, at
a particular time t, there are N clusters such that cluster i
generates a set Mi of Mi metrics. These metrics are stored
locally and periodically sent to a centralized controller for
further processing. For the metric j of cluster i, denoted by
mij , we denote its collection frequency and data-point size
to be fij and dij , respectively. Thus, the total bandwidth
consumption bi of cluster i for the transmission of metrics
and the constraints that it must satisfy are presented below.

bi =

Mi∑
j=1

dijfij , bi ≤ Bi, ∀i ∈ [1, N] and
N∑
i=1

bi ≤ B (1)

Here, Bi and B denote the available upload and download
bandwidth of cluster i and the controller, respectively. To
analyse the impact of varying the collection frequency of
metrics, we consider the most commonly used downstream
application of anomaly detection.

Modelling of Anomalies: Typically, anomalies are of 3
types [48], point anomalies where individual data points
are anomalous with respect to other data points, contextual
anomalies where data points are anomalous depending on the

6

context (flat period in an oscillatory curve), and collective
anomalies where a collection of data points are anomalous
together, but not individually. It is implicit that each anomaly
impacts a subset of available metrics. A large number of time
series anomaly detection algorithms have been proposed by
extensive research in this area. We treat the anomaly detection
algorithm as a black box for the rest of our work.

We consider that the anomaly detection algorithm is able
to detect a set A of K anomalies. Each anomaly k impacts a
subset Mk of metrics either directly (#requests that error out)
or indirectly (queue build up due to slow processing causing
high memory utilization). Here, |Mk| ≥ 1, i.e., each anomaly
impacts atleast 1 metric. The anomalies have varying levels
of significance, and impact each metric to a different degree,
which is quantified using weights. We denote the weight of
anomaly k as vk, and that of mij for detection of k as wijk,
such that vk, wijk ∈ [0, 1]. The following constraints hold.

K∑
k=1

vk = 1 and
N∑
i=1

Mi∑
j=1

wijk = 1 ∀k ∈ [1,K] (2)

The fast and successful detection of an anomaly relies
heavily on the availability of updated metrics after the anomaly
occurs. Thus, in a system which collects metrics at different
frequencies, the time to detect (TTD) an anomaly is limited by
the refresh time of the metric collected at the lowest frequency.
Mathematically, we express TTD Tk for anomaly k as follows.

Tk = max
mij∈Mk

1

fij
and Tk ≤ Tmax

k , ∀k ∈ [1,K] (3)

Here, Tmax
k is a given threshold for successful detection of k.

Problem Formulation: In this work, our aim is to decide
the optimal metric collection frequencies such that the overall
bandwidth consumption for metric data collection as well
as average TTD of all anomalies are minimized. Hence, the
objectives of this problem are as follows.

OBJ1 : argmin
F

N∑
i=1

bi, OBJ2 : argmin
F

Tk, ∀k ∈ [1,K] (4)

where F denotes the frequency matrix of all metrics in M.
By careful inspection of this equation, it is observed that
the information regarding the importances or weights of each
metric and each anomaly is not captured in either of the
objectives. However, we analyse that this information can
help to further improve the efficiency of anomaly detection
by selecting more nuanced frequency distributions: (i) Some
anomalies are more significant than others, the metrics affected
by the more significant anomalies can be collected at higher
frequencies, thereby reducing their TTDs in comparison to less
significant ones. (ii) A particular metric may be affected by a
number of anomalies to varying degrees. It may be beneficial
to collect such metrics, i.e., with high cumulative weights, at
higher frequencies. To capture these, we introduce a parameter,
termed as Freshness Index, to quantify the freshness of signif-
icant metrics. Denoted by FI , it is defined the the weighted
average of the frequencies of all metrics. Based on this term,
we define the third objective of this problem as follows:

OBJ3 : argmax
F

FI, where FI =
K∑

k=1

vk
∑

mij∈Mk

wijkfij (5)

Fig. 6: Architecture of Experimental Setup

We combine the aforementioned objectives into a single
objective function O by rewriting the terms in maximization
form and calculating their weighted sum, as shown below:

O : argmax
F

α
K∑

k=1

∑
mij∈Mk

vkwijkfij + β
K∑

k=1

1

Tk
− γ

N∑
i=1

bi

 (6)

subject to bandwidth and TTD constraints mentioned in Equa-
tions (1) and (3) and Fmin ≤ fij ≤ Fmax. Here, α, β, and
γ are scaling constants, and Fmin and Fmax denote the min-
imum and maximum possible metric collection frequencies.

Solution: The optimization problem defined above is a non-
linear optimization problem with non-linear constraints. It can
however be linearized easily by introducing introduce auxiliary
variables zk = 1/Tk ∀k ∈ [1,K]. The resulting problem
with linear objectives and constraints can be solved using any
linear optimization algorithm such as Simplex and Interior
Point method. In our implementation, we use Gurobi [49]
optimizer which implements these algorithms under the hood.
Specifically, we use the gurobipy Python library to implement
the optimization code. The framework to modify the metrics
as per the output of the optimizer is achieved using PMF.

V. EVALUATION

Experimental Setup: The PMF Processor is built over
SQLite 1 [50]. We use Prometheus 2 [51] and Cortex 3 [52].
Comparison experiments are with OpenTelemetry 4 [53] and
we use Gurobi 5 [54] for optimization. Our experiments were
run on a cluster of baremetal servers 6. We describe our
evaluation setup in Figure 6.

Metric Generator: We used a custom metric generator that
varies the number of metrics, the number of labels and the size
of each metric. The metrics are in the Prometheus metrics
format, but m can be easily extended to other formats like
OTel. We run a Prometheus instance that scrapes metrics from
the metric generator every 30 seconds and then pushes them
in the remote write format to the PMF Processor.

We evaluate our PMF Processor on the following axes: (i)
Throughput, (ii) Per-component and end-to-end system latency
and (iii) CPU and Memory Utilization. Insert time is the time
taken by the Reader to insert a batch of metrics into the table.
Exec time is the time taken by the Executor to execute the SQL
queries on that batch and Export time is the time taken by the
Writer to export the metrics in their original format. The total
Batch Execution Time (BET) is the sum of these. Throughput
is the total number of metrics in a batch divided by the BET
(Throughput = #metrics/BET). The resource overhead
of the PMF Processor is consistently low and experiences

1 v3.31.1 2 v2.43.0 3 v1.14.1 4 v0.92.0 5 v10.0.1 6 Intel(R)
Xeon(R) Gold 5218 CPU @ 2.30GHz processor with 64 cores and 2
threads/core, and 800 GB RAM, running 64-bit Ubuntu 20.04.6

7

Fig. 7: BET & Thrpt. on varying #metrics Fig. 8: Effect of #metrics on resource util. Fig. 9: Performance Comparison: OTel Fig. 10: Resource Comparison: OTel

spike only during batch metric processing. Therefore, for an
accurate representation of the resource overhead, we report the
99th percentile for both CPU and memory overheads. Unless
otherwise specified, experiments are run with 40K metrics and
10 labels generated every 30 seconds and PMF Processor
executes a Frequency Transform with selector defined on
one label. We use number of metrics in similar ballpark as
production cloud environments as shown in [55].

A. PMF Performance and Scalability

DAG Type No. of
Units

No. of
Selectors

Creation
Time (µs)

Singular 1 1 30.785µs
1 7 51.099µs
1 15 51.38µs

Parallel 7 1 106.853µs
15 1 187.809µs

Sequential 7 1 127.463µs
15 1 288.854µs

TABLE II: DAG creation Latency

Throughput and Batch Execution Time: In Figure 7, we
show the performance and scalability of the PMF Processor
by plotting the throughput and per-component execution time
while varying the number of metrics processed in a batch. No-
tably, the Exec latency is the highest, followed by the insertion
latency. PMF exhibits linear scalability up to 200K metrics,
with a linear increase in end-to-end BET with the number of
metrics. Throughput is stable at around 40K metrics/sec up to
200K metrics, gradually declining beyond that threshold. For
a batch of 40K metrics, the BET is ∼0.9s.

Resource Overheads: Figure 8 shows the resource utiliza-
tion of the PMF Processor. The CPU usage remains con-
sistently low at around 2.5-3%, exhibiting minimal variation
with the number of metrics per batch. On the other hand,
memory scales linearly with the number of metrics due to
the batch processing nature of the PMF Processor, where all
arrived metrics are stored before processing. For a batch of
40K metrics, the memory overhead is ∼328MB.

Control Plane Latency: The PMF control plane initializes
and updates the DAG. Initialization of the DAG happens only
once for conversion to corresponding SQL queries. However,
the user can update the DAG dynamically. This update could
be minor, such as updating a parameter of a Transform Unit
or adding/deleting Transform units in the DAG. The updation
time for DAGs is negligible, measuring around ∼12µs. Table II
shows the creation time of DAGs of varying complexities. A
DAG with a single Transform Unit with multiple selectors
consolidates those selectors into a single SQL condition. A

Parallel DAG has multiple disparate queries and a Sequential
DAG consists of nested queries. We observe that the DAG
creation time is quite small, a Sequential DAG with 15
Transform units taking the maximum time of 288µs. The
Fast control plane latency renders PMF highly responsive and
adaptable to the user’s dynamic requirements.

B. Comparison with State-of-the-art

We compare our system with the closest state-of-the art
for metric transformation, OTel. It does not support all the
transformations described in § III-A. Therefore, we focus
on the end-to-end filter transformation latency, varying the
number of metrics as shown in Figure 9. We use the same
metric generator and run OTel on the same setup as PMF .
However, a significant operational difference between OTel
and PMF is that by default PMF exports metrics that are
not transformed (i.e. metrics not matching the selector), while
OTel drops non-transformed metrics unless explicitly speci-
fied. Consequently, PMF has a higher BET when the default
behaviour (No-Op transform) is enabled, which increases with
the number of metrics. For a fair comparison, we configure
PMF’s default behaviour to drop non-transformed metrics
(PMF without No-Op) and observe comparable execution
times for both PMF and OTel. The slightly higher execution
time of PMF can be attributed to our more generic and
programmable design. Figure 10 shows the resource utilization
comparison of PMF and OTel. Currently, PMF processor is
not optimized for efficient memory utilization. In future, we
plan on working on optimizations targeted at enhancing table
structures. Interestingly, PMF can process the same number of
metrics with significantly lower (10X) CPU consumption com-
pared to OTel, demonstrating PMF’s applicability in resource-
constrained environments such as edge clouds. It’s worth
noting that dynamic transformation updates are not supported
by OTel and are thus not part of the comparison.

C. Microbenchmarks

Effect of Number of Labels A metric comprises of a
metric name, a set of labels (in key:value format), a timestamp
and a value, collectively contributing to the metric’s size. The
number of labels in a metric significantly impacts not only the
metric size but also metric processing time and memory over-
head. To assess this impact, we vary the number of labels in a
metric from 5 to 20, aligning with the typical label count (10-
15) observed in prior art and production environments [56, 57].
A metric generated by the metric generator with 10 labels
is ∼450B in size. In the PMF Processor, an increase in the

8

number of labels corresponds to more entries in the labels
table § III, resulting in higher exec times, as depicted in the
green segment of the bar graphs in Figure 11. This increase
in table size also leads to the rise in memory consumption, as
illustrated in Figure 12, while the CPU consumption remains
consistently low and stable.

Fig. 11: BET & Thrpt. with #labels Fig. 12: CPU and Memory with #labels

Effect of Transformation Type In Figure 13 we plot the
BET for different Transform Units § III-A. All experiments are
on a single Transform with a single selector. While insertion
latency is independent of the Transform, exec latency depends
on the Transform being executed. The Filter Transform has the
least execution latency. Frequency, Adaptive and Aggregate
Transforms are more complex as they perform non-trivial
computation on the metrics data and have higher exec latency.
No-op Transform Unit updates every entry and marks them for
export, thus having the highest exec and export latency. CPU
and Memory overheads (Figure 14), are stable across different
Transforms. These overheads are primarily a function of the
number of metrics and their corresponding sizes, rather than
the transformation being applied.

Fig. 13: Effect of Transformation Type on
Batch Execution Time and Throughput

Fig. 14: Effect of Transformation type on
CPU and Memory Overhead

Effect of DAG size and Type Table III shows the BET,
component wise latency, Throughput and resource overhead
by: (i) varying the DAG size and (ii) comparing Parallel vs
Sequential DAG Type. All units in these DAGs are Frequency
Transform. Increasing the DAG size from 3 to 7 units has a
negligible impact on resource utilization.

Each transform in Parallel DAGs operates on all the metrics,
exhibitng a higher execution latency than Sequential DAGs,
wherein each Transform operates on the output of the pre-
ceding Transform. The higher latency of Parallel DAGs could
potentially be offset by parallel processing.

We also observe that Sequential DAGs have higher export
latency. This is due to our No-Op Transform Unit, where for
every transform selecting a subset of metrics, the complemen-
tary set of metrics is processed using the No-Op transform
(currently set to send all). In the parallel DAG, a single No-
Op unit handles the complement of the intersection of all

selectors. However, in the Sequential DAG, there is a No-
Op Transform at every level of the chain, sending all metrics
not Transformed. Figure 15 provides a detailed explanation
of this reasoning. Consequently, Sequential DAGs export a
larger number of metrics due to the No-Op transform and incur
higher export latency as demonstrated in Figure 13.

Effect of Number of Selectors As mentioned in § III-A,
each transform has one or more selectors, defined on labels,
which act as conditions in the SQL query (WHERE clause).
Selectors allow users to select groups of metrics using label
keys and values, a Transform Unit can have queries on
multiple labels. In Table IV, we evaluate the overhead of union
of multiple selectors (performed as an INTERSECT operation
over all the selectors), for a Frequency Transform. We observe
that only the exec time varies with the number of selectors. The
insert latency and resource usage remain constant, as expected.

#Selectors Insert
(sec)

Exec
(sec)

Export
(sec)

E2E
(sec)

Throughput
(metrics/sec) CPU (%) Memory

(in MB)

3 0.284 1.155 0.140 1.580 31638.89 2.56 223.67
5 0.296 1.529 0.147 1.972 25348.54 2.54 286.16
7 0.295 1.786 0.143 2.225 22467.87 2.39 341.53

TABLE IV: Effect of #Selectors on PMF Performance and Resource Overhead

Effect of In Memory vs File storage The use of SQLite
gives us the benefit of using either RAM or disk storage for
the metrics and labels tables § III. As disk storage incurs an
expensive I/O operation, the insert operation is expensive as
seen in Table V. But it also tends to have low memory(RAM)
pressure, since the tables are not maintained in-memory as
in the alternative case. Given the relatively lower memory
overhead and the faster compute, in-memory storage emerges
as the preferred choice for implementing PMF processor, and
it is the default choice for all other experiments.

Storage
Type

Insert
(sec)

Exec
(sec)

Export
(sec)

E2E
(Sec)

Throughput
(metrics/sec) CPU (%) Memory

(MB)

File 0.824 0.68 0.066 1.571 25448.53 2.23 221.91
Memory 0.254 0.629 0.066 0.951 42043.30 2.84 328.52

TABLE V: Effect of Storage Type on PMF Performance and Resource Overhead

D. Evaluation of Dynamic Frequency Usecase

To show the impact of metric collection with dynamic
frequencies, we simulate a multi-cloud system with 1 central
cloud and 10 edge clouds running 100 clusters each. Metrics
are generated at a frequency of 1 second by the clusters. The
PMF Optimizer runs at the central cloud. We also simulate
each metric time series as a step function with an increment
every 10 seconds with some probability. We assume random
weight distribution between anomalies and Pareto [58] (80-20)
weight distribution between metrics per anomaly. The detailed
simulation parameters are presented in Table VI.

For comparison, we consider the following two baselines
and analyse their performance in our simulation settings: (a)
Prometheus, which scrapes metrics once every 30 seconds, and
consumes a total bandwidth of 13.2 MB/sec, and (b) MaxFreq,
which scrapes metrics at the highest frequency, i.e., once every
second, and consumes a total bandwidth of 400 MB/sec.

9

DAG
Type

No. of
Units

Insert
(sec)

Exec
(sec)

Export
(sec)

E2E
(sec)

Throughput
(metrics/sec)

CPU
(%)

Memory
(MB)

Parallel 3 0.25 1.04 0.024 1.31 30553.01 2.39 323.77
5 0.24 1.27 0.014 1.52 26178.01 2.13 319.24
7 0.24 1.49 0.013 1.75 22848.31 2.15 309.67

Sequential 3 0.25 0.64 0.068 0.96 41666.66 2.90 316.24
5 0.26 0.630 0.064 0.95 42025.63 2.86 321.75
7 0.26 0.63 0.067 0.98 40682.69 2.82 256.03

TABLE III: Effect of DAG size and type on PMF Performance and Resource Overhead Fig. 15: Effect of No-Op on DAG Types

Parameter Value

#Metrics per Cluster [10K−4M]
Size of each Metric 100 Bytes

#Anomalies 50
Metric generation Per Sec

#Metrics per Anomaly 100
Min Metric Freq 0.001
Max Metric Freq 1
Total Bandwidth [4 − 400]MB/s

TABLE VI: Simulation Parameters Fig. 16: Effect of Bandwidth on WRE Fig. 17: Effect of Bandwidth on FI Fig. 18: Optimization Runtime

1) Impact of Dynamic Frequency: We analyse the impact
in terms of two major parameters: Weighted Reconstruction
Error (discussed later in this subsection) and Freshness Index.
We vary the allowable bandwidth for metric collection from
4 MB/sec to 400 MB/sec, calculate the corresponding optimal
metric frequencies using our proposed scheme in § IV, and
obtain the values of the aforementioned parameters. In this
case, we also annotate the values of the parameters for the
two baselines (Prometheus and MaxFreq).

a) Weighted Reconstruction Error (WRE): WRE quanti-
fies the average information loss resulting from scraping met-
rics at a frequency less than the frequency of data generation.
It is calculated as the mean average percentage error (MAPE)
between the actual time series xij(n) of metric mij and the
time series xF

ij(n) obtained by sampling mij at a frequency
of F . Mathematically,

WREF =

N∑
i=1

Mi∑
j=1

zij

N∑
n=1

|xij(n) − xF
ij(n)|

xF
ij(n)

(7)

Here, zij denotes the weight of metric mij calculated as
follows: zij =

∑K
k=1 vkwijk. Note that, there are several

metrics which are not relevant to any of the anomaly functions,
i.e., have weight wijk = 0 ∀k ∈ [1,K]. To capture their
contribution to the WRE, we assign a minimum weight of
10−5 to these metrics.

In Figure 16, we observe that WRE reduces as the band-
width increases. When the same amount of bandwidth as
Prometheus, i.e., 13.2 MB/sec, is made available, our scheme
has a lower WRE (∼ 600x reduction) as it collects metrics
with higher weights at higher frequencies. When the maximum
bandwidth is made available, WRE using our scheme is
same as that of MaxFreq. This is intuitive since a larger
bandwidth enables the optimization algorithm to assign higher
frequencies to more number of metrics.

b) Freshness Index (FI): The variation of FI, as defined
in Equation 5, with increasing values of available bandwidth
is shown in Figure 17. We observe that FI increases with
increasing available bandwidth using our scheme. This can be

attributed to the same reason mentioned above. It is noteworthy
that for the same bandwidth as that of Prometheus, our scheme
results in a higher FI. This shows that our scheme is able
to capture fresh values of more important metrics, unlike
Prometheus, at the same bandwidth.

2) Optimization Runtime Analysis: Real world multi-cloud
deployments can produce millions of metrics per sample.
Therefore, the proposed optimization will have to deal with
a huge number of variables and constraints. Typically, the
complexity of optimization algorithms is polynomial in the
number of variables and constraints [59]. However, we were
able to linearize the problem and reduce its complexity by
majorly using sparse matrices for modelling. To show the
impact of the number of metrics on optimization, we vary
the total number of metrics from 10K to 4M, assuming metric
size of 100B, corresponding bandwidth varies from 1 MB/sec
to 400 MB/sec. We study the variation in the solver runtime
(Figure 18). We observe that increasing the number of metrics
does not result in a significant increase in the runtime, thereby
making our scheme scalable. As our maximum optimization
runtime is less than a second, this makes the PMF highly
adaptable to user’s dynamically changing requirements.

VI. CONCLUSION

In this paper, we propose PMF, a novel metric processing
framework for fast, programming and dynamic transformation
of metric flows. PMF processes flows using SQL, supporting
generic transforms, and enables dynamic metric transforma-
tions through reconfiguration. PMF is light-weight, easily
programmable, and more resource efficient than OTel. We
evaluate PMF extensively for frequency transformation aiming
at reducing WAN cost in an edge-cloud environment with
minimum impact on any downstream task on the metrics. Our
experiments show that dynamic frequency metric collection
aids in increasing the efficiency of downstream tasks like
anomaly detection. This work is just the start in the era of
dynamic programmability for observability starting with the
metric pipeline, which we plan to extend to other modalities.

10

REFERENCES

[1] “Flexera 2023 State of the Cloud Report.” https://
info.flexera.com/CM-REPORT-State-of-the-Cloud, Jan.
2023, [Online; accessed 23. Jan. 2024].

[2] “Gartner says cloud will be the centerpiece of new digital
experiences,” https://www.gartner.com/en/newsroom/
press-releases/2021-11-10-gartner-says-cloud-will-be-
the-centerpiece-of-new-digital-experiences, Jan. 2023,
[Online; accessed 19. Jan. 2023].

[3] “From metrics to insight,” https://prometheus.io/, Jan.
2024, [Online; accessed 23. Jan. 2024].

[4] “graphite,” https://graphiteapp.org/, Jan. 2024, [Online;
accessed 23. Jan. 2024].

[5] VictoriaMetrics, “Simple & Reliable Monitoring That
Scales,” Jan. 2024, [Online; accessed 30. Jan. 2023].
[Online]. Available: https://victoriametrics.com/

[6] Datadog, “Cloud Monitoring as a Service | Datadog,”
Cloud Monitoring as a Service, Jul. 2016. [Online].
Available: https://www.datadoghq.com

[7] “Modern cloud done right,” Mar. 2023, [Online;
accessed 25. Apr. 2023]. [Online]. Available: https:
//www.dynatrace.com

[8] “IBM Instana Observability,” Jan. 2024, [Online;
accessed 30. Jan. 2024]. [Online]. Available: https:
//www.ibm.com/products/instana

[9] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia,
R. Chen, B. Viswanath, L. Jiao, and C. Fetzer, “Sieve:
actionable insights from monitored metrics in distributed
systems,” in Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference, ser. Middleware ’17, 2017.

[10] “Azure Monitor pricing.” https://azure.microsoft.com/
en-in/pricing/details/monitor/, Jan. 2024, [[I[Online; ac-
cessed 23. Jan. 2024].

[11] “Google Cloud’s operations suite pricing.” https://
cloud.google.com/stackdriver/pricing, Jan. 2024, [On-
line; accessed 23. Jan. 2024].

[12] J. Levin and T. A. Benson, “Viperprobe: Rethinking
microservice observability with ebpf,” in 2020 IEEE 9th
International Conference on Cloud Networking (Cloud-
Net), 2020.

[13] V. Jacob, F. Song, A. Stiegler, B. Rad, Y. Diao, and
N. Tatbul, “Exathlon: a benchmark for explainable
anomaly detection over time series,” Proceedings of the
VLDB Endowment, vol. 14, no. 11, pp. 2613–2626, 2021.

[14] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei,
“Robust anomaly detection for multivariate time series
through stochastic recurrent neural network,” in Proceed-
ings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, 2019, pp. 2828–
2837.

[15] P. Filonov, A. Lavrentyev, and A. Vorontsov, “Multi-
variate industrial time series with cyber-attack simula-
tion: Fault detection using an lstm-based predictive data
model,” arXiv preprint arXiv:1612.06676, 2016.

[16] L. M. Candanedo and V. Feldheim, “Accurate occupancy

detection of an office room from light, temperature,
humidity and co2 measurements using statistical learning
models,” Energy and Buildings, vol. 112, pp. 28–39,
2016.

[17] Z. Wang, J. Xue, and Z. Shao, “Heracles: an efficient
storage model and data flushing for performance moni-
toring timeseries,” Proceedings of the VLDB Endowment,
vol. 14, no. 6, pp. 1080–1092, 2021.

[18] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, “Copod:
copula-based outlier detection,” in 2020 IEEE Interna-
tional Conference on Data Mining (ICDM). IEEE, 2020,
pp. 1118–1123.

[19] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python
toolbox for scalable outlier detection,” Journal of
Machine Learning Research, vol. 20, no. 96, pp. 1–7,
2019. [Online]. Available: http://jmlr.org/papers/v20/19-
011.html

[20] D. Giouroukis, A. Dadiani, J. Traub, S. Zeuch,
and V. Markl, “A survey of adaptive sampling and
filtering algorithms for the internet of things,” in
Proceedings of the 14th ACM International Conference
on Distributed and Event-Based Systems, ser. DEBS
’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 27–38. [Online]. Available: https:
//doi.org/10.1145/3401025.3403777

[21] G. M. Dias, B. Bellalta, and S. Oechsner, “A survey
about prediction-based data reduction in wireless sensor
networks,” ACM Comput. Surv., vol. 49, no. 3, nov 2016.
[Online]. Available: https://doi.org/10.1145/2996356

[22] N. Yaseen, B. Arzani, K. Chintalapudi, V. Ranganathan,
F. Frujeri, K. Hsieh, D. S. Berger, V. Liu, and S. Kandula,
“Towards a cost vs. quality sweet spot for monitoring net-
works,” in Proceedings of the Twentieth ACM Workshop
on Hot Topics in Networks, 2021, pp. 38–44.

[23] “OpenTelemetry.” https://opentelemetry.io/, Jan. 2024,
[Online; accessed 23. Jan. 2024].

[24] Prometheus, “Overview | Prometheus,” Jan. 2024,
[Online; accessed 30. Jan. 2024]. [Online]. Available:
https://prometheus.io/docs/introduction/overview

[25] “Thanos,” Jan. 2024, [Online; accessed 30. Jan. 2024].
[Online]. Available: https://thanos.io

[26] “Cortex,” Jan. 2024, [Online; accessed 30. Jan. 2024].
[Online]. Available: https://cortexmetrics.io

[27] “Grafana: The open observability platform | Grafana
Labs,” Jan. 2024, [Online; accessed 30. Jan. 2024].
[Online]. Available: https://grafana.com

[28] E. Ates, L. Sturmann, M. Toslali, O. Krieger, R. Meg-
ginson, A. K. Coskun, and R. R. Sambasivan, “An
automated, cross-layer instrumentation framework for
diagnosing performance problems in distributed applica-
tions,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC ’19.

[29] S. Chen, C. Delimitrou, and J. F. Martı́nez, “Parties: Qos-
aware resource partitioning for multiple interactive ser-
vices,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming

11

https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://prometheus.io/
https://graphiteapp.org/
https://victoriametrics.com/
https://www.datadoghq.com
https://www.dynatrace.com
https://www.dynatrace.com
https://www.ibm.com/products/instana
https://www.ibm.com/products/instana
https://azure.microsoft.com/en-in/pricing/details/monitor/
https://azure.microsoft.com/en-in/pricing/details/monitor/
https://cloud.google.com/stackdriver/pricing
https://cloud.google.com/stackdriver/pricing
http://jmlr.org/papers/v20/19-011.html
http://jmlr.org/papers/v20/19-011.html
https://doi.org/10.1145/3401025.3403777
https://doi.org/10.1145/3401025.3403777
https://doi.org/10.1145/2996356
https://opentelemetry.io/
https://prometheus.io/docs/introduction/overview
https://thanos.io
https://cortexmetrics.io
https://grafana.com

Languages and Operating Systems, ser. ASPLOS ’19.
[30] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi,

and C. Delimitrou, “Seer: Leveraging big data to navi-
gate the complexity of performance debugging in cloud
microservices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS ’19.

[31] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and
G. Outhred, “Taking the blame game out of data centers
operations with netpoirot,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16.

[32] S. Meng, A. K. Iyengar, I. M. Rouvellou, and L. Liu,
“Volley: Violation likelihood based state monitoring for
datacenters,” in 2013 IEEE 33rd International Confer-
ence on Distributed Computing Systems, 2013.

[33] T. Mastelic and I. Brandic, “Data velocity scaling via
dynamic monitoring frequency on ultrascale infrastruc-
tures,” in 2015 IEEE 7th International Conference on
Cloud Computing Technology and Science (CloudCom),
2015.

[34] Y. Meng, Z. Luan, and D. Qian, “Differentiating data
collection for cloud environment monitoring,” China
Communications, 2014.

[35] S. Talla, P. Ghare, and K. Singh, “Tbdrs: Threshold
based data reduction system for data transmission and
computation reduction in wsns,” IEEE Sensors Journal,
vol. 22, no. 11, pp. 10 880–10 889, 2022.

[36] J. Haghighat and W. Hamouda, “A power-efficient
scheme for wireless sensor networks based on trans-
mission of good bits and threshold optimization,” IEEE
Transactions on Communications, vol. 64, no. 8, pp.
3520–3533, 2016.

[37] B. Gedik, L. Liu, and P. S. Yu, “Asap: An adaptive
sampling approach to data collection in sensor networks,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 12, pp. 1766–1783, 2007.

[38] H. Harb, A. Makhoul, A. Jaber, R. Tawil, and
O. Bazzi, “Adaptive data collection approach based on
sets similarity function for saving energy in periodic
sensor networks,” Int. J. Inf. Technol. Manage., vol. 15,
no. 4, p. 346–363, jan 2016. [Online]. Available:
https://doi.org/10.1504/IJITM.2016.079603

[39] S. Goel and T. Imielinski, “Prediction-based monitoring
in sensor networks: taking lessons from mpeg,”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 5,
p. 82–98, oct 2001. [Online]. Available: https://doi.org/
10.1145/1037107.1037117

[40] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and
G. P. Picco, “Practical data prediction for real-world
wireless sensor networks,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 27, no. 8, pp. 2231–
2244, 2015.

[41] R.-S. Liu, K.-W. Fan, Z. Zheng, and P. Sinha, “Perpetual
and fair data collection for environmental energy har-
vesting sensor networks,” IEEE/ACM Transactions on

Networking, vol. 19, no. 4, pp. 947–960, 2011.
[42] Y. Zhang, S. He, J. Chen, Y. Sun, and X. S. Shen, “Dis-

tributed sampling rate control for rechargeable sensor
nodes with limited battery capacity,” IEEE Transactions
on Wireless Communications, vol. 12, no. 6, pp. 3096–
3106, 2013.

[43] U. Kulau, J. van Balen, S. Schildt, F. Büsching, and
L. Wolf, “Dynamic sample rate adaptation for long-term
iot sensing applications,” in 2016 IEEE 3rd World Forum
on Internet of Things (WF-IoT), 2016, pp. 271–276.

[44] G. LLC, “Protocol Buffers,” Jan. 2024, [Online; accessed
30. Jan. 2023]. [Online]. Available: https://protobuf.dev/

[45] N. Carriero and D. Gelernter, “Linda in context,” Com-
mun. ACM, 1989.

[46] T. K. Authors, “Component Specification,” Jan.
2024, [Online; accessed 30. Jan. 2023]. [Online].
Available: https://www.kubeflow.org/docs/components/
pipelines/v1/reference/component-spec

[47] OpenTelemetry, “Transform Processor,” Jan. 2024,
[Online; accessed 30. Jan. 2023]. [Online]. Avail-
able: https://github.com/open-telemetry/opentelemetry-
collector-contrib/tree/main/processor/transformprocessor

[48] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly
detection: A survey,” ACM computing surveys (CSUR),
vol. 41, no. 3, pp. 1–58, 2009.

[49] Gurobi Optimization, LLC, “Gurobi Optimizer
Reference Manual,” 2023. [Online]. Available:
https://www.gurobi.com

[50] SQLite, “SQLite3 Release,” Jan. 2024, [Online;
accessed 30. Jan. 2024]. [Online]. Available:
https://www.sqlite.org/releaselog/3 31 1.html

[51] prometheus, “Prometheus Authors,” Jan. 2024, [Online;
accessed 30. Jan. 2023]. [Online]. Available: https:
//prometheus.io/download/

[52] C. Authors, “Cortex,” Jan. 2024, [Online; accessed
30. Jan. 2023]. [Online]. Available: https://github.com/
cortexproject/cortex/releases

[53] T. O. Authors, “Install the Collector,” Jan. 2024,
[Online; accessed 30. Jan. 2023]. [Online]. Available:
https://opentelemetry.io/docs/collector/installation/

[54] G. OPTIMIZATION, “Gurobi Optimization,” Jan. 2024,
[Online; accessed 30. Jan. 2023]. [Online]. Avail-
able: https://www.gurobi.com/downloads/older-versions-
gurobi-software/

[55] A. Valialkin, “Measuring vertical scalability for time
series databases in Google Cloud,” Jan. 2024, [Online;
accessed 30. Jan. 2024]. [Online]. Available: https://
valyala.medium.com/measuring-vertical-scalability-for-
time-series-databases-in-google-cloud-92550d78d8ae

[56] X. Shi, Z. Feng, K. Li, Y. Zhou, H. Jin, Y. Jiang,
B. He, Z. Ling, and X. Li, “Byteseries: an in-memory
time series database for large-scale monitoring systems,”
in Proceedings of the 11th ACM Symposium on Cloud
Computing, ser. SoCC ’20, 2020.

[57] C. Shen, Q. Ouyang, F. Li, Z. Liu, L. Zhu, Y. Zou, Q. Su,
T. Yu, Y. Yi, J. Hu, C. Zheng, B. Wen, H. Zheng, L. Xu,

12

https://doi.org/10.1504/IJITM.2016.079603
https://doi.org/10.1145/1037107.1037117
https://doi.org/10.1145/1037107.1037117
https://protobuf.dev/
https://www.kubeflow.org/docs/components/pipelines/v1/reference/component-spec
https://www.kubeflow.org/docs/components/pipelines/v1/reference/component-spec
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/transformprocessor
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/transformprocessor
https://www.gurobi.com
https://www.sqlite.org/releaselog/3_31_1.html
https://prometheus.io/download/
https://prometheus.io/download/
https://github.com/cortexproject/cortex/releases
https://github.com/cortexproject/cortex/releases
https://opentelemetry.io/docs/collector/installation/
https://www.gurobi.com/downloads/older-versions-gurobi-software/
https://www.gurobi.com/downloads/older-versions-gurobi-software/
https://valyala.medium.com/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae
https://valyala.medium.com/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae
https://valyala.medium.com/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae

S. Pan, B. Wu, X. He, Y. Li, J. Tan, S. Wang, D. Pei,
W. Zhang, and F. Li, “Lindorm tsdb: A cloud-native time-
series database for large-scale monitoring systems,” Proc.
VLDB Endow., p. 3715–3727, aug 2023.

[58] B. C. Arnold, “Pareto distribution,” Wiley StatsRef:
Statistics Reference Online, pp. 1–10, 2014.

[59] N. Megiddo et al., On the complexity of linear program-
ming, 1986.

13

	Introduction
	Background and Related Work
	Programmable Metric Flows (PMF)
	Transforms
	Transform DAGs
	Dynamism
	Implementation

	Dynamic Frequency Optimization
	Evaluation
	PMF Performance and Scalability
	Comparison with State-of-the-art
	Microbenchmarks
	Evaluation of Dynamic Frequency Usecase
	Impact of Dynamic Frequency
	Optimization Runtime Analysis

	Conclusion

